

SPE-196565-MS

High Molecular Weight Organic Scale Near Wellbore Improved Oil Recovery

Siti Aishah Mohd Hatta, Ainul Azuan Masngot, Sulaiman Sidek, M Hafizi M Yusuf, Kok Liang Tan, Kellen Hui Lian Goh, Catherine Ye Lin Tang, Caesarsokate Bernard, M Hizbullah Mawardi, Haziqah Hamzah, Suzanna Juyanty Mohd Jeffry, Latief Riyanto, Eddy Samaile, and Azman Ahmat Kamis, PETRONAS Carigali Sdn. Bhd.; Muhammad Al-Siediq Ahnap, Setegap Ventures Petroleum Sdn. Bhd.; Zaizul Kamal Ramli and Chun Hwa See, Al-Cube Sdn. Bhd.

Copyright 2019, Society of Petroleum Engineers

This paper was prepared for presentation at the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition held in Bali, Indonesia, 29-31 October 2019.

Abstract

Oil production from the field begin with the first oil in January 2003. Unfortunately, the wells produced viscous emulsion which caused the production decline rapidly. Further analysis of the production data showed that the decline in production over a long period of time is very consistent with organic deposition at or near the perforation interval.

Over the years, several analyses and production enhancement efforts including chemical and mechanical treatments have been attempted with minimal success. The damaging mechanism was determined to be caused by rare High Molecular Weight Organic Deposit (HMWOD) that have caused a significant pressure drop in the tubing, which consequently restrict oil production and tested to only disperse at above 90°C. It was suspected that the deposit was a naturally-occurring component of the crude oil itself, separating from the bulk of the crude as a consequence of the fluids movement towards the wellbore and the consequent drop in fluid pressure.

An eco-friendly nano-fluid was developed and pilot treatment conducted in February 2014, which successfully rejuvenated the well back to production. Subsequent treatment was conducted in early 2018 on the same well and later replicated on another well as part of technology maturation process. This paper incorporates laboratory tests conducted to customize the nano-fluid, engineering approach on the treatment volume, simulation analysis on treatment schedules, treatment procedure as guidance for offshore personnel and actual field result of the treatments.

Remedial treatment for near wellbore HMWOD using novel nano-fluid has successfully revived the wells back to production. Further development and replication would open-up bigger opportunities to unlock potential of wells with similar organic deposit issue throughout PETRONAS' operation.

Introduction

The field located 40km Northwest Offshore Sarawak, at water depth of 259ft below Mean Sea Level (MSL). It was discovered in August 1998 with the exploration drilling of Well #1. The Field Development Plan

This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright.

(FDP) comprises of one development well penetrating clastic Reservoir A, B and C. The Reservoir A was entirely oil bearing while the Reservoir B encountered a clearly defined oil-water contact. The drive mechanism for both reservoirs A and B is solution-gas with moderate aquifer support, whilst Reservoir C has water-bearing poor quality shally sand (Figure 1).

Figure 1—Location map of the field

Development Well #2 was positioned slightly to the South from center of the reservoirs at an elevation of 8,860ft, to encountered area of high amplitude that seen in the reservoirs and away from the A and B faults that have a high probability to act as impermeable barriers. It was drilled from nearby matured field platform, located 2.5km to the Southeast, where the fluids were commingled before it is sent to the existing piping for separation and processing (Figure 2).

Figure 2—Depth structure map of Well #2

It was completed in January 2003 as dual string oil producer using 2-3/8" K-Fox, L-80 4.6ppf tubing inside 7" BTC, L-80 26ppf liner with Short String (SS) completed in Reservoir A and Long String (LS) completed in Reservoir B. Permanent packer set above Reservoir B and a dual hydraulic packer set above Reservoir A, the separation of the dual completion will enable proper reservoir management throughout the field life (Figure 3).

Cot	npletion Type	W/Head: Cameron SSMC Dat			Date : Completion Fluids			Set	Set -Side		Set Pin	Plar Released	Block				
Dual Completion		X-Tree : Cameron Dual			August 18, 2009		9.7ppg Filtered Brine			Dual Singl							
						MD BDF			MD BDF	SS	LS	15	00 PSI	45K	8	0 K.	
	De	scription	ID	OD	Inc.	Depth		2.538	Depth	Inc.	OD	ID		Description			
Item	Sh	ort String	Inch	Inch	Deg.	Feets	1	2	Feets	Deg.	Inch	Inch		Long String		Iter	
	Cameron Dual	Split Tbg Hanger					1 4	COLUMN TWO IS NOT					Cameron	Dual Split Tbg Ha	nger		
	2 3/8"K-Fox T	bg Jts 11											2 3/8"K-	Fox Tbg Jts 11 + 21	Pup		
1	2 3/8"TRDP-4	EO TRSCSSV	1.875	4.140		476.43		нип	509.51		4.140	1.875	2 3/8"TE	DP-4EO TRSCSS	v	1	
	S/N: HTS-890												S/N HT				
	2.3/8"K-Fox T	by Jts 34 + Pup											2 3/8"K	Fox The Jts 34			
2	2 MS" KRUG		1 901	4 369		1576.18		月辺目	1602 31		4 369	1 901	2 3/8" K	RUG		2	
	S/N 202 HT 8		1	4.505				H (8) 9			4.507	1.00	S.N. 227	HTS		1.1	
	3 18"K For T	he Ite 23 + Pun						211044					3 3/8"1	For The Ite 23			
	2 3/8" KBUG	of are to a tab	1 001	4 360		2324.43		1 1 1 1 1 2	2355.03		1 260	1 001	2 1/8" K	RUG		1	
	SAL 22 LT C		1.901	4.303				311281			4.305	1.701	S AT 220	LITE			
	2 LOWVE TOT	he Ite 10 + Pers						H/1133					3 10"1	For The Its 10			
	A DO R-FUL I	og 315 19 + Fup	1 001	1.260		2022 21		. 11 3 8 7 1	2002.04		1260	1 001	- 3/0 R-	PUL TO JISTS			
•	2 3/8 KBUG		1.901	4,309		2955./1		.п.н.	2903.04		4.309	1.901	2 3/0 A	BUG		•	
	5/N 118 HI 8							H\U ?*					S/N: 210	HIS			
	2 3/8 K-F 0X 1	og Jts 19 +Pup		1.340		1000 00		PU JH L	10110		1.200		2 3/8 K-	Fox 10g Jts 19			
2	2 3/8" KBUG		1.901	4.309		3582.90		ELLI J° I	3011.30		4.309	1.901	2 3/8 K	BUG		2	
	S/N: 184 HI 8							•) ff (S/N: 210	HIS			
23	2 3/8"K-F ox 1	bg Jts 20 + Pup	12.222	1200		1.3275673		HTHL	200225-000		1252	1.00	2 3/8"K-	Fox 1bg Jts 20			
6	2 3/8" KBUG		1.901	4.369		4240.64		7	4266.47		4.369	1.901	2 3/8" K	BUG		6	
	S/N: 209 HT 8	1 100 100						112111					S/N: 209	HT 8			
	2 3/8"K-Fox T	bg Jts 54				- and the second			7				2 3/8"K-	Fox Tbg Jts 54 + Pr	ab 🕹		
7	2 3/8" KBUG		1.901	4.369		5966.46		111471	6000.44		4.369	1.901	2 3/8" K	BUG	100	7	
	S/N: 212 HT 8						8	08111-					S/N:				
	2 3/8"K-Fox T	bg Jts 180 + 2 Pup					1.1	8					2 3/8"K-	Fox Tbg Jts 180			
8	2 3/8"CAMX ?	NIPPLE	1.875	2.600		11692.47		IIIHY	11703.09		2.600	1.875	2 3/8"CS	X-1D SSD		8	
	S/N:HTN 0533							in the					S/N HT	0 0 4 7 5			
	and the second second		1.000	1000		1000000000	9		10000000		0.0223		and the second			100	
9	7"HYDRO 12		1.897	5.880		11728.95		YE OF T	11728.95		5.880	1.897	7"HY D	1012		9	
	S/N:HIP 0037						10	Наци	1				S/N HT	P 0037			
						all trains	11	HALL	10000				2 3/8"K-	Fox Tbg Jts 1			
10	2 3/8"CSX-1D	SSD	1.875	2.600		11748.68	12	8604 10	11809.55		2.600	1.875	2 3/8"CS	X-1D SSD		10	
	S/N:HTO 0448												S/N HT	00190			
								一月)	111111				2 3/8"K-	Fox Tbg Jts 1			
	2 3/8"K-Fox T	bg Jts 1						611	11846.00		2.780	1.901	2 3/8"K	Fox 6.4# Blast Joint	100	11	
11	2 3/8"CAMXN	NIPPLE	1.791	2.600		11783.47		fff	12005.19				1.1.1				
	S/N:HIN								12006.50		4.280	2.440	No-Go L	ocator		12	
									12007.00		4.000	3.000	4" x 2 7/	8" seal assy. x 8 uni	ts		
12	2 3/8"W/L RE	ENTRY GUIDE	1.901	2.600		11785.35			100000000000000000000000000000000000000			1.000	Adapter		20.0		
	110 C 1						^ 3	11套									
							1 1	Î	12017.48		2,600	1.875	2 3/8"CS	X-1D SSD		13	
A			-	-	_	11882.00	1	111					S/N HT	00438			
						12000.00		H h					# Onemer				
			1			1	1	112	12022 60		2 600	1 701	2 38"0	MAX NIPPLE		14	
	<u> </u>	NO	TTC				i I		1.00.00		1.000	1.121	C AT.	CHARTER FEE		1 **	
			ILS				1 1			1			5/IN :				
								- I I I I I I I I I I I I I I I I I I I	12021 67		2 600	1 001	3 1/0"DT	ALD OUT STID		12	
							1 1		12023.07		2,000	1.901	2 3/0 FC	MP OUT SUB		12	
								HI	1				S/N :				
								114.	1				Not Shee	red - ID 1.00"			
								1113	Contract Contra		2000	19482	and the second s	a subscriptions		23	
								1614	12007.00		5.880	4.000	7"MOD.	L PERMAPKR		16	
								11									
							1	815					1				
													1				
B						12024.00	B	홍									
						12160.00	1	L É					1				
										1							

Figure 3—Schematic diagram of Well #2

Table 1—Well #2 information and parameters

Well #2	Short String	Long String			
Reservoir	Reservoir A	Reservoir B			
Formation Type	Sandstone				
Zone Interval, ft-MDBDF	11,882 - 12,000	12,024 - 12,160			
Reservoir Pressure, psi	3,800	2,750			
Reservoir Temperature, °C	94	97			
Average Porosity, %	18	17			
Average Permeability, mD	10	10			
Completion Type	Dual String Oil Producer				
Production Tubing	2-3/8" K-Fox, L80 4.6ppf				
Production Casing/Liner	7" BTC, L-80 26ppf				
PBTD, ft-MDBDF	12,360				

Well #2 production started to drop rapidly towards the end of 2003. Multiple production enhancement efforts, including chemical and mechanical treatments, conducted over the years with minimal success.

Identification of Damage Mechanism

The damage cannot be removed by acid treatment, thus appears to be organic in nature. Further analysis of production data showed that the decline over a long period of time is very consistent with organic deposition

at or near the perforation interval. Likewise, experiment result showed presence of substances in the crude with the ability to emulsify oil and water to form sticky deposit that gives the possible explanation of very stable emulsion problems on surface (Figure 4).

Figure 4—Stable emulsified crude and sticky deposit

Lab studies documented in June 2012 concludes that there was a presence of High Molecular Weight Organic Deposit (HMWOD), exist at temperature greater than 90°C, that have caused a significant pressure drop in the tubing and consequently restrict the hydrocarbon production from the reservoir into the wellbore (Figure 5).

Figure 5-Multi-step chemical extraction process

These deposit was a naturally-occurring component of the crude oil itself, separating from the bulk of the crude as a consequence of the fluids movement towards the wellbore and the consequent drop in fluid pressure. As such, nano-fluid pilot treatment was considered to rejuvenate the wells back to production.

Nanoemulsion Surfactant

Nanotechnology has had revolutionary impact in many industries and is finding more application in the oilfield to enhanced drilling performance, well deliverability and reservoir productivity. It refers to a field of applied science and technology of matter manipulation on atomic and molecular scale, generally with at least one dimension sized from 1 to 100 nanometers, to accomplished specific purposes. Nanoscale materials properties such as melting point, electric conductivity and chemical reactivity change significantly from those at larger scales (Figure 6).

Figure 6—Comparison of length scale

Surfactants are compound that lower the surface or interfacial tension that may act as detergents, wetting agents, emulsifiers, foaming agents or dispersants. Usually organic compounds of two well-defined moieties, the oil-soluble hydrophobic group (e.g. their heads) and water-soluble hydrophilic group (e.g. their tails). Surfactant molecules tend to self-coagulate and form molecular cluster called *micelle*. At Critical Micelle Concentration (CMC), further addition of surfactant will lead to creation of new micelle that reduce surface tension and eventually will form emulsions. Emulsions are not equilibrium system, disperse multiphase system of two or more insoluble liquids that consist of at least one continuous outer phase and one isolated inner phase.

Microemulsions are thermodynamically stable mixtures of oil and water, form spontaneously in the presence of surfactants. In contrast to emulsions, they are form upon right blend of the components that do not require high shear conditions and will not phase separate with time. Microemulsions are single phase system in which the oil and water may adopt a bicontinuous structure or be present in the form of droplets of one phase dispersed within the other.

Nanoemulsions do not form spontaneously as their characteristic and stability depend highly upon the preparation method, order of addition of components and the nature of phases generated during the emulsification process. They have significantly greater surface areas than similar masses of larger-scale materials. As surface area per mass of a material increases, a larger amount of the material can come into contact with surrounding materials, thus affecting reactivity to solubilize large amount of materials without vigorous agitation or turbulence flow.

An eco-friendly nanoemulsion surfactant was developed to remediate Well #2 production, that can disperse HMWOD to clean the near wellbore. It also can act as demulsifier to stabilize the crude and alter the wettability of the formation to more water wet for the easier flow of oil.

Rigorous laboratory testing conducted using the nanoemulsion surfactant showed positive results with the following main findings (Table 2);

- 1. Manage to disperse the deposit without agitation.
- 2. Withstand and stable at high temperature.
- 3. Does not cause clay swelling or secondary precipitation.

No.	Sample Condition	Evaluation Objective	Findings		
1	Crude sample at room temperature	Evaluate chemical treatment on sticky deposit at room temperature	Nanoemulsion surfactant treat sticky deposit by dispersing and demulsification (Figure 7)		
2	Crude sample at room temperature	Evaluate inhibition of redeposition of sticky wax during cooling	Sticky deposit is dispersed very well by nanoemulsion surfactant and oil-wet the surface (Figure 8)		
3	Crude sample at room temperature	Evaluate dissolution rate of sticky deposit at stagnant condition	45 minutes for 95% dissolution with 30% nanoemulsion surfactant and 3.5 hours for 95% dissolution with 100% nanoemulsion surfactant (Figure 9)		
4	HMWOD emulsion at elevated >90°C	Evaluate chemical treatment on HMWOD emulsion	Nanoemulsion surfactant able to demulsify and disperse HMWOD (Figure 10)		
5	Dried HMWOD at elevated >90°C	Evaluate chemical treatment on dried HMWOD	Nanoemulsion surfactant able to disperse and making dried HMWOD not sticky (Figure 11)		
6	HMWOD residue at elevated >90°C	Evaluate static soaking time of dissolving HMWOD	Nanoemulsion surfactant able to dissolve and disperse HMWOD without the formation of sticky deposit after 3 hours static soaking (Figure 12)		
7	Crude sample (contain HMWOD) in syntactic core at elevated >90°C	Simulate extracting crude oil with HMWOD in sandstone reservoir	Nanoemulsion surfactant effectively penetrate into the syntactic core to extract the trapped oil (Figure 13)		

Table 2—Summary of chemical evaluation

Figure 7—Evaluate chemical treatment on sticky deposit

Figure 8—Redeposition inhibition test

- · Flowable wax separate from oil
- · Small redeposits observed after 1 day staging at room temperature

- · Wax finely dispersed
- Whole solution is flowable even • staged at room temperature for >1 day

Figure 9—Wax dissolution and redeposition test

- The deposit was preheat at >95°C for >15 minutes
- Nanoemulsion surfactant was dosed in at temperature >95°C

Nanoemulsion surfactant able to break & disperse the HMWOD emulsion, also making the deposit not sticky to the wall

Figure 10—Nanoemulsion surfactant with HMWOD emulsion

The deposit was preheat at >95°C for >30 minutes, HMWOD remained as dried solid Dried HMWOD start dissolving in Nanoemulsion surfactant HMWOD is removed & dispersed, less than 2 minutes

Figure 12—Static soaking test of HMWOD at 90°C

Figure 13—Simulation of extracting the oil trapped in sandstone reservoir

Field Implementation

The treatment was designed to target the near-wellbore critical matrix of 3ft (e.g. most of reservoir pressure drop during production occurs) where injected nano-fluid can restore original permeability.

Remedial Treatment of Long String

The string production started to decline towards the end of 2003, several attempts were made such as Gaslift Optimization (GLOP), chemical stimulation (e.g. include organic and inorganic acid stimulation) and reperforation but the results were unsatisfactory (Figure 14).

Figure 14—Historical treatment on long string

Pilot treatment conducted in 2014 successfully rejuvenated the string with 42% additional oil production and managed to remove HMWOD in the near-wellbore (e.g. evidence by higher FTHP). It generated a stabilized instantaneous gain back to the previous trend in approximately 9 months. However, the emulsion issue reoccured once all fluid in contact with nanoemulsion produced (e.g. after 500 barrels produced liquid).

Post job discussion suggest tubing soaking and wellbore clearance followed by flowback of the well before proceed with main treatment injection into the near-wellbore. As such, subsequent treatments were conducted in 2018 with improved treatment schedule (Table 3) and higher volume to sustain the production and penetrate deeper into the wellbore (Figure 15).

Figure 15—Treatment design and improvement

	2014 Treatment	-	2018 Treatment						
Treatment Stage Fluid		Volume (bbls)	Rate (bpm)	Treatment Stage	Fluid	Volume (bbls)	Rate (bpm)		
Tubing and Wellbore Clean-Up		84	0.5 - 1	Pre-Flush	Diesel	2	0.5 - 1		
S	hut-in well and soak for	4hours	Tubing and Wellbore Clean-Up	Nanoemulsion surfactant	10	0.5 - 1			
Tubing and Wellbore Clean-Up	Nanoemulsion surfactant	84	Shut-in well and soak for 30minutes						
S	hut-in well and soak for	4hours	Tubing and Wellbore Clean-Up	Nanoemulsion surfactant	10	0.5 - 1			
Tubing Displacement Synthetic Paraffin 66 0.5 - 1				Shut-in well and soak for 30minutes					
Sh	nut-in well and soak for	12hours	Tubing and Wellbore Clean-Up	Nanoemulsion surfactant	10	0.5 - 1			
15			Shut-in well and soak for 6hours						
			Post-Flush	Diesel	10	0.5 - 1			
		Shut-in well and soak for 30minutes							
			Post-Flush	Diesel	10	0.5 - 1			
			Shut-in well and soak for 30minutes						
				Post-Flush	Diesel	10	0.5 - 1		
			Shut-in well and soak for 12hours.						
				W	ireline intervention to ri	in ICC.			
				Pre-Flush	Diesel	2	1 - 3		
				Main Treatment	surfactant	149	1 – 3		
				Tubing Displacement	Diesel	46	1 – 3		
			Sh	ut-in well and soak for	12hours				
				Over-Flush	Over-Flush				
			Shut-in well and soak for 12hours						

This has successfully revived the string back to production at lower total treatment cost (Figure 16).

Remedial Treatment of Short String

The string production started to decline towards the end of 2003, several attempts were made such as Gaslift Optimization (GLOP), chemical stimulation (e.g. include organic and inorganic acid stimulation) and reperforation but the results were unsatisfactory (Figure 17).

Figure 17—Historical treatment on short string

Consequent from long string treatment, nanoemulsion treatment was replicated in short string (Table 4).

Treatment Stage	Fluid	Volume (bbls)	Rate (bpm)						
Pre-Flush	Diesel	2	0.5 - 1						
Tubing and Wellbore Clean-Up	Nanoemulsion surfactant	10	0.5 – 1						
Shut-in well and soak for 30minutes									
Tubing and Wellbore Clean-Up	Nanoemulsion surfactant	10	0.5 – 1						
Shut-in well and soak for 6hours									
Post-Flush	Diesel	10	0.5 - 1						
Shut-in well and soak for 30minutes									
Post-Flush	Diesel	10	0.5 - 1						
Shut-in well and soak for 30minutes									
Post-Flush	Diesel	6	0.5 - 1						
Shut-in well and soak for 12hours. Wireline intervention to run TCC.									
Pre-Flush	Diesel	2	1 – 3						
Main Treatment	Nanoemulsion surfactant	140	1 – 3						
Tubing Displacement	Diesel	48	1 – 3						
Shut-in well and soak for 12hours									
Over-Flush	Diesel	140	1 – 3						
Shut-in well and soak for 12hours									

Table 4—Summary of short string treatment schedule

This has successfully regain SS production (e.g. 25% incremental) and thus contributed substantial improvement to the field production (Figure 18).

Figure 18—Short string production history

Conclusion

- 1. The wells suffer damage from the organic scales identified in the recovered deposits and in the laboratory testing.
- 2. Remedial treatment for near wellbore HMWOD using nanoemulsion surfactant has successfully revived LS from idle back to production and regain SS production at 25% increment.
- 3. The improved treatment design able to sustain the gain for longer period, at lower total treatment cost and contributed substantial improvement (e.g. 100% increment) to the field production.
- 4. Further development and replication would open-up bigger opportunities to unlock potential of well with similar organic deposit issue throughout PETRONAS' operation.

Acknowledgement

The authors wish to thank the management of Petroliam National Berhad (PETRONAS), PETRONAS Carigali Sdn. Bhd., Setegap Ventures Petroleum Sdn. Bhd., Al-Cube Sdn. Bhd. and KCS Chemical Solution Sdn. Bhd. for the permission to publish this paper. Special thanks are extended to project team members for the full commitment and support on this project.

References

- 1. Robb, I.D. 1981. Microemulsions. Plenum Press, New York.
- 2. Friberg, S.E., and Bothorel, P. 1988. *Microemulsions: Structure and Dynamics*. CRC Press, Boca Raton.
- 3. McCormick, C.L., Bock, J., and Shulz, D.N. 1989. *Encyclopedia Polymer Science and Engineering*. Second Edition. Wiley Interscience, New York.
- 4. Del Gaudio, L., Bortolo, R., and Lockhart, T.P. 2007. *Nanoemulsions: A New Vehicle for Chemical Additive Delivery*. SPE-106016-MS.
- 5. Van Zanten, R., and Ezzat, D. 2010. Surfactant Nanotechnology Offers New Method for Removing Oil Based Mud Residue to Achieve Fast, *Effective Wellbore Cleaning and Remediation*. SPE-127884-MS.
- 6. Kapusta, S., Balzano, L., and Te Riele, P.M. 2011. *Nanotechnology Applications in Oil and Gas Exploration and Production*. IPTC-15152-MS.
- 7. Saphanuchart, W., Loke, Y.S., and See, C.H. 2012. *Nanoemulsion-Enhanced Treatment of Oil-Contaminated Oil-Based Drill Solids*. SPE-162401-MS.
- 8. Karare, M. 2015. *Nanotechnology Fundamentals and Applications*. I.K. International Publishing House, New Delhi.
- 9. Gupta, A., Eral, H.B., Hatton, T.A., and Doyle, P.S. 2016. Nanoemulsions Formation, Properties and Applications. *Soft Matter*, **12**, 2826 2841.
- 10. Lucuara, G., Usuriaga, J., Campo, P., Sepulveda, E., and Pacheco, C. 2016. Damage Remediation in a Mature Field Reservoir by Applying a Customized Treatment Using Surface Active Additives and Diversion Technologies: Case Histories from San Francisco Field. SPE-179000-MS.
- 11. Lau, H.C., Yu, M., and Nguyen, Q.P. 2016. *Nanotechnology for Oilfield Applications: Challenges and Impact*. SPE-183301-MS.
- 12. Gutierrez, M., Bonilla, F., Gil, L., Parra, W., Campo, P., Orozco, A., and Garcia, M. 2017. *Chemical Stimulation Pilot at a Heavy-Oil Field: Key Considerations, Workflow, and Results.* SPE-184974-MS.